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We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of
two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and
observe the predicted t−1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more
complex oscillating behavior and negative tails for strongly confined geometries. Because the t−1 tail of the
velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient
does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation
gives a poor approximation to the velocity autocorrelation function at both short and long times.
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I. INTRODUCTION

The role of hydrodynamics in two dimensions �2D� is
considerably more complex than in three dimensions �3D�.
For example, when, in 1851, George Gabriel Stokes �1� tried
to extend his famous calculation of the low Reynolds �Re�
number flow field around a sphere to that of a cylinder, he
found that there was no finite solution because �2�

the pressure of the cylinder on the fluid continually tends
to increase the quantity of fluid which it carries with it,
while the friction of the fluid at a distance from the cyl-
inder continually tends to diminish it. In the case of a
sphere, these two causes eventually counteract each
other, and the motion becomes uniform. But in the case
of a cylinder, the increase in the quantity of fluid carried
continually gains on the decrease due to the friction of
the surrounding fluid, and the quantity carried increases
indefinitely as the cylinder moves on.

This observation was later called the “Stokes paradox.”
Experimental realizations of 2D systems are, of course, al-
ways embedded in one way or another in the 3D world. In a
classic set of papers, Saffman and Delbruck �3� demonstrated
how taking into account the upper and lower boundaries on a
2D system solves the Stokes paradox because these bound-
aries open up a new channel for momentum flow out of the
system. If the viscosity of the confining medium is ��, while
the viscosity of the confined medium of height h is �, then a
new length scale emerges,

LS �
h�

��
, �1�

beyond which the true 3D nature of the whole system needs
to be taken into account. The zero Re number Stokes equa-
tions also cease to be valid at distances larger than LRe
�� /U, where � is the kinematic viscosity and U is the ve-
locity of the fluid, because inertial forces must be taken into
account. Although inertial terms also become relevant at
similar length scales in 3D, this fact does not need to be
taken into account to obtain bounded solutions of the Stokes

equations. For length scales L�min�LS ,LRe�, the total mo-
mentum in the 2D layer is approximately conserved and
Saffman showed that for a disk of radius Rc and thickness h,
the 2D diffusion coefficient for stick boundary conditions
takes the following finite form �3�:

D2d =
kBT

4��h
�ln	 h�

Rc��

 − �� . �2�

where kB is Boltzmann’s constant, T is the temperature, and
�=0.557 2 is Euler’s constant. Note that in contrast to the
3D form, where the diffusion coefficient only depends on
kBT, Rc, and �, here both the thickness of the film h and the
viscosity of the boundary �� enter into the expression for the
diffusion coefficient. Equation �1� also implies that 2D hy-
drodynamic behavior will be most evident when the confin-
ing boundary has a very low viscosity.

Examples of experimental systems where 2D hydrody-
namics are important include diffusion of protein and lipid
molecules in biological membranes �4–6�. Cicuta et al. �7�
recently directly measured the diffusion of liquid domains in
giant unilamellar vesicles �GUVs� and found that the mean-
square displacement of the domains scaled logarithmically
with their radius, in agreement with Saffman’s prediction.

Experiments on colloidal particles confined in a thin sheet
of fluid �such as a soap film� have used video imaging �8�
and optical tweezers �9� to explicitly demonstrate that the
hydrodynamic interaction between the particles decays loga-
rithmically with distance. These effects can be understood by
solving the 2D Stokes equations and carefully taking into
account the boundary conditions. Because the 3D boundary
in these cases is air, with a much smaller viscosity than the
soap solution, LS can be as large as 0.1m or more. The low
Re numbers typical of colloidal suspensions mean that LRe
can be much larger than that, on the order of many meters.

If a 2D systems is confined to within dimensions L
�min�LS ,LRe� then the diffusion coefficient scales with sys-
tem size as �10�

D � ln�L/Rc� . �3�
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The goal of this paper is to use computer simulations to
study the hydrodynamics of colloidal discs in confined ge-
ometries. We limit ourselves to 2D, which has the advantage
that simulations are faster than in 3D. The price we pay for
this is that we must take into account some of the subtleties
of 2D hydrodynamics described earlier, such as the finite-
size effects illustrated, for example, by Eq. �3�. But these
effects can also be observed in experiments on quasi-two-
dimensional systems and are therefore interesting in their
own right.

We use a combination of stochastic rotation dynamics
�SRD� �11–13� to describe the solvent and molecular dynam-
ics �MD� to solve the equations of motion for the colloids.
Such a hybrid technique was first employed by Malevanets
and Kapral �14� and used to study colloidal sedimentation by
ourselves �15� and by Hecht et al. �16�. We have recently
completed an extensive study of this method to study the
hydrodynamics of colloidal suspensions �13�, which we will
call ref I, and we summarize some of the main points of the
method in Sec. II.

Particle-based methods such as SRD �Note that in the
literature this method is also sometimes called multiple par-
ticle collision dynamics, see, e.g., �17�.� have the advantage
that boundary conditions are very easy to implement as ex-
ternal fields. This contrasts with traditional methods of com-
putational fluid dynamics where boundary conditions are
typically harder to implement. Thus methods such as SRD
may be ideally suited for the study of colloids in confined
geometries. The rapid development of new methods to create
microfludic systems is also stimulating experimental studies
on colloids in confined geometries �18�. For that reason,
computer simulation techniques that can calculate the prop-
erties of colloids in narrow channels will become increas-
ingly important. Another field of possible application in-
cludes flow in porous media �19,20�.

We proceed as follows. In Sec. II we describe the hybrid
molecular dynamics/SRD method we employ and sketch out
the key hydrodynamic parameters that govern the flow be-
havior. Section III describes simulations of a pure SRD fluid
system in 2D, where we find that the effects of hydrody-
namic correlations are more pronounced than those found in
3D �17�. We also explore the important role of finite-size
effects. In Sec. IV we calculate the velocity autocorrelation
function �VACF� for colloids in 2D and show how confine-
ment qualitatively affects their long-time behavior. In Sec. V,
we analyze the diffusion coefficient for colloids in 2D and
connect the confinement effects seen for the velocity auto-
correlation function to the behavior of the diffusion coeffi-
cient. We summarize our main conclusions in Sec. VI.

II. HYBRID MD-SRD COARSE-GRAINED
SIMULATION METHOD

To describe the hydrodynamic behavior of colloids in-
duced by a background fluid of much smaller constituents,
some form of coarse graining is required. The hydrodynam-
ics can be described by the Navier Stokes equations that
coarse grain the fluid within a continuum description. The
downside of going directly through this route is that every

time the colloids move, the boundary conditions on the dif-
ferential equations change, making them computationally ex-
pensive to solve.

An alternative to the direct solution of the Navier Stokes
equations is to use particle-based techniques that exploit the
fact that only a few conditions, such as �local� energy and
momentum conservation, need to be satisfied to allow the
correct �thermo� hydrodynamics to emerge in the continuum
limit. Simple particle collision rules, easily amenable to ef-
ficient computer simulation, can therefore be used. Boundary
conditions �such as those imposed by colloids in suspension�
are easily implemented as external fields. One of the first
methods to exploit these ideas was direct simulation Monte
Carlo �DSMC� method of Bird �21,22�. The lattice Boltz-
mann �LB� technique where a linearized and preaveraged
Boltzmann equation is discretized and solved on a lattice
�23� is a popular modern implementation of these ideas and
in particular has been extended by Ladd and others �24–29�
to model colloidal suspensions.

In this paper, we implement the SRD method first derived
by Malevanets and Kapral �11�. It resembles the Lowe-
Anderson thermostat �30� but has the advantage that trans-
port coefficients have been analytically calculated
�12,31,32�, greatly facilitating its use. It is important to re-
member that for all these particle-based methods, the par-
ticles should not be viewed as some kind of composite su-
pramolecular fluid units but rather as coarse-grained Navier
Stokes solvers �with noise in the case of SRD� �13�.

An SRD fluid is modeled by N point particles of mass m,
with positions ri and velocities vi. The coarse-graining pro-
cedure consists of two steps: streaming and collision. During
the streaming step, the positions of the fluid particles are
updated via

ri�t + �tc� = ri�t� + vi�t��tc. �4�

In the collision step, the particles are split up into cells with
sides of length a0, and their velocities are rotated around an
angle 	 with respect to the cell center-of-mass velocity,

vi�t + �tc� = vc.m.,i�t� + Ri�	��vi�t� − vc.m.,i�t�� , �5�

where vc.m.,i=� j
i,t�mv j� /� jm is the center-of-mass velocity of

the particles the cell to which i belongs, Ri�	� is the cell
rotational matrix, and �tc is the interval between collisions.
The purpose of this collision step is to transfer momentum
between the fluid particles while conserving the energy and
momentum of each cell.

The fluid particles only interact with one another through
the collision procedure. Direct interactions between the sol-
vent particles are not taken into account, so that the algo-
rithm scales as O�N� with particle number. This is the main
cause of the efficiency of simulations using SRD. The care-
fully constructed rotation procedure can be viewed as a
coarse graining of particle collisions over space and time.
Mass, energy, and momentum are conserved locally, so that
on large enough length scales the correct Navier Stokes hy-
drodynamics emerges, as was shown explicitly by Maleva-
nets and Kapral �11�.

An advantage of SRD is that it can easily be coupled to a
solute as first shown by Malevanets and Kapral �14� and
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studied in detail in a recent paper by two of the present
authors �13� �ref I�. If we wish to simulate the behavior of
spherical colloids of mass M, they can be embedded in a
solvent using a molecular-dynamics technique. For the
colloid-colloid interaction, we use a standard steeply repul-
sive potential of the form,


cc�r� = 
4����cc

r �48
− ��cc

r �24
+ 1

4� �r 
 21/24�cc�

0 �r � 21/24�cc� ,
�

while the interaction between the colloid and the solvent is
described by a similar but less steep potential,


cs�r� = 
4����cs

r �12
− ��cs

r �6
+ 1

4� �r 
 21/6�cs�

0 �r � 21/6�cs� ,
�

where �cc and �cs are the colloid-colloid and colloid-solvent
collision diameters. We propagate the ensuing equations of
motion with a velocity Verlet algorithm �33� using a
molecular-dynamics time step �t

Ri�t + �t� = Ri�t� + Vi�t��t +
Fi�t�
2M

�t2, �6�

Vi�t + �t� = Vi�t� +
Fi�t� + Fi�t + �t�

2M
�t , �7�

where Ri and Vi are the position and velocity of the colloid,
and Fi is the total force exerted on the colloid. Coupling the
colloids in this way leads to slip boundary conditions. Stick
boundary conditions can also be implemented �34�, but for
qualitative behavior, we do not expect there to be important
differences. In parallel, the velocities and positions of the
SRD particles are streamed in the external potential given by
the colloids and the external walls and updated with the SRD
rotation-collision step every time step �tc.

To prevent spurious depletion forces, we set the interac-
tion range �cs slightly below half the colloid diameter �cc /2
and include a small compensating potential for very short
distances �when �
cc�r��2.5�. For further details of how
this procedure reproduces the correct equilibrium behavior,
see ref I �13�.

The larger the ratio �cc /a0, the more accurately the hy-
drodynamic flow fields will be reproduced. Here we use
�cc /a0=4.3 and �cs=2a0, which was shown in ref I to repro-
duce the flow fields with small relative errors for a single
sphere in a 3D flow. Other parameters choices taken from ref
I include �cc=�cs=2.5kBT for the colloids and �=5, 	= 1

2�
for the SRD particle number density and rotation angle, re-
spectively. The time steps for the MD and SRD are set by
slightly different physics �13�, and we chose �t=0.025t0 and
�tc=0.1t0, where t0=a0� m

kBT is the unit of time in our simu-
lations.

Coarse-graining methods such as SRD are useful when
they make the calculation of certain desired physical proper-
ties more efficient. To achieve this, compromises must be
made �there is no such thing as a free lunch�. For colloidal
suspensions, for example, the Re number is typically very
low, on the order of 10−5 or less, and similarly the Mach
number Ma=U /cs, where U is a typical system velocity and

cs is the velocity of sound, can be as small as 10−10. To
achieve this in a particle-based simulation is extremely ex-
pensive. Resolving sound waves would mean that since they
travel much faster than colloidal particles, extremely small
time steps would be necessary in the simulation. Luckily
even for Ma numbers as high 0.1, the hydrodynamics can be
accurately approximated by incompressible hydrodynamics,
so that one does not need to fulfill the physical condition to
obtain essentially the same physical behavior. Similarly, for
many applications, as long as the Re number is significantly
lower than 1, the system can still be accurately described by
the Stokes equations. A more detailed discussion of these
length scales and hydrodynamic numbers can be found in ref
I, and we will implicitly be making use of these arguments
for the current work.

A similar set of arguments can be made for the time scales
of a real colloidal fluid compared to those found in our
coarse-grained description. For example, the kinematic time
defined as ��=�cs

2 /�, i.e., the time it takes a the vorticity to
diffuse one colloidal radius, is on the order of 10−6 s for a
buoyant colloid of radius 1 �m suspended in water. For the
same system, the diffusion time �D=�cc

2 /D�5 s. Resolving
these time scales in one simulation would be very inefficient.
In ref I, we claim that successful coarse-graining techniques
must telescope down the hierarchy of time scales to more
manageable separations that are efficient for computational
purposes. We argue that what is needed is not an exact rep-
resentation of all the time scales of the physical system but
rather a clear time-scale separation. For example, having ��

be only 1 or 2 orders of magnitude smaller than �D can still
lead to an accurate description of the desired physics. How-
ever, interpreting the results means taking this telescoping
down of time scales into account and to do this properly, one
has keep careful track of the physics involved. Expressing
results as much as possible in terms of dimensionless units
can facilitate this process �13�.

III. DYNAMICS OF SOLVENT PARTICLES

Before investigating the behavior of colloids in suspen-
sion, we study a simpler problem of an SRD fluid confined to
two dimensions. Much of this section will follow on an ear-
lier comprehensive study by Ripoll et al. �17� in 3D, but here
we focus on 2D.

We begin by deriving an expression for the velocity auto-
correlation function of the SRD particles, following similar
steps to those found in Ref. �17� for 3D. The nth collision
step of the SRD method can be rewritten as

vi�n�tc� = vi„�n − 1��tc… + �Ri�	� − I�

��vi„�n − 1��tc… − vc.m.,i„�n − 1��tc…� , �8�

where I is the unit matrix, and t=n�tc is the discretized time,
with n as the number of collision steps, �tc as the collision
interval, and vc.m.,i as the cell center-of-mass velocity. The
rotation matrix is defined in two dimensions as

Ri�	� = 	 cos 	 �sin 	

�sin 	 cos 	



such that the rotational average over any vector A becomes
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��R�	� − I�A� = − �1 − cos 	��A� = − �	�A� . �9�

If we now assume density fluctuations in each cell to be
small, we can write �vc.m.,i�n�tc��� 1

m� �� j
i,nv j�. By multiply-

ing each side by �vi�0�� and further assuming the velocity of
colliding particles to be uncorrelated, we arrive at

�vc.m.,i„�n − 1��tc…vi�0�� �
1

m�
�vi„�n − 1��tc…vi�0�� ,

�10�

where � is the average number of solvent particles per cell.
Substituting Eqs. �10� and �9� into Eq. �8� and rearranging,
we obtain an expression for the correlation of a fluid particle

�vi�n�tc�vi�0�� = �1 − �	��
m��vi„�n − 1��tc…vi�0�� , �11�

where ��
m=1− 1

m� . This expression shows that we can write
the correlation at a certain time step in terms of the previous
time step, from which we find that the normalized VACF is

�vi�n�tc�vi�0��
�vi

2�0��
� �n, �12�

where �=1−�	��
m is the decorrelation factor. The VACF, for

reasons that will become apparent later, is the quantity of
interest here and has the form

�vi�n�tc�vi�0�� �
kBT

m
�n. �13�

A similar analysis can be performed for the case of a
single heavy tracer particle of mass m� embedded in a sol-
vent �17�. The total mass in a collision box is then �m�
+m�� such that the center-of-mass correlation is written as

�vc.m.,i�n�tc�vi�0�� �
m�

m� + m�
�vi�n�tc�vi�0�� . �14�

By substituting Eq. �14� into Eq. �8�, the decorrelation factor
for a heavy tracer particle is found to be

� = 1 − �	

m�

m� + m�
= 1 − �	��

M . �15�

The self-diffusion constant D of a particle i is related to
its mean-square displacement via the Einstein relation �35�

D = lim
t→�

1

4t
��ri�t� − ri�0��2� . �16�

The position of a particle can be written explicitly in terms of
discrete time steps

ri�t� = ri�0� + �tc�
k=0

n−1

vi�k�tc� , �17�

so that

��ri�t� − ri�0��2� = �tc
2�

j=0

n−1

�
k=0

n−1

�vi�j�tc�vi�k�tc�� . �18�

We note that combining the equation above with Eq. �16�
leads to the discrete form of the standard Green-Kubo ex-

pression for the diffusion coefficient as an integral over the
velocity autocorrelation function. Manipulating the sums, we
find �36�

�
j=0

n−1

�
k=0

n−1

�vi�j�tc�vi�k�tc��

= �
j=0

n−1

�vi
2�j�tc�� + 2�

j=0

n−2

�
k=j+1

n−1

�vi�j�tc�vi�k�tc��

= 2n
kBT

m
+ 2�

j=1

n−1

j�vi�0�vi„�n − j��tc…� . �19�

Substituting the expression for the VACF derived earlier Eq.
�13� into Eq. �19�, we can write the diffusion coefficient in
terms of its decorrelation factor �,

D = lim
n→�

kBT

m
�tc�1

2
+

1

n
�
j=1

n−1

j�n−j� =
kBT�tc

2m
�1 + �

1 − �
� .

�20�

Substituting Eq. �15� into Eq. �20� results in the following
dimensionless expressions for the self-diffusion constant of a
fluid and heavy tracer particle, respectively:

D0
m

D0
= �� 1

1 − cos 	
	 m�

m� − 1

 −

1

2
� , �21�

D0
m�

D0
=

�m

m�
� 1

1 − cos 	
�� +

m�

m

�
� −

1

2
� . �22�

D0 denotes the unit of diffusion and is expressed as a0
2 / t0

=a0
�kBT /m and � is the dimensionless mean-free path. It is

a measure of the average distance the fluid particles travel in
between collisions and has the form �13�

� =
�tc

a0
�kBT

m
=

�tc

t0
. �23�

These expressions for D make a key approximation,
namely, that collisions are always random and that the par-
ticle velocities are uncorrelated. This neglects any hydrody-
namic effects. These expressions are thus expected to be-
come more accurate if the mean-free path � becomes larger
so that the random collision approximation is a better de-
scription. Ripoll et al. �17� showed that in 3D, for their simu-
lation parameters, the expression �21� for the self-diffusion
of an SRD particle began to show significant deviations from
measured values when the mean-free path was smaller than
0.6. Similarly, they found that for smaller mean-free paths
�=0.1, these expressions could underestimate the diffusion
coefficient of a tagged heavier particle of mass M by as
much as 75% for M �10m.

In Fig. 1 we analyze the self-diffusion coefficient of a
tagged SRD particle as a function of mass and of mean-free
path for a square geometry with plates L=32a0 SRD cell
widths wide. Similarly to Ripoll et al. �17�, we find devia-
tions due to hydrodynamics, but in 2D these are much more
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pronounced. For example, as the mass increases, the hydro-
dynamic corrections to Eq. �21� saturate at a deviation of
over 200% for larger masses. For small mean-free path, there
are deviations due to hydrodynamic correlations, as shown
by Ripoll et al. �17�. We observe larger deviations as a func-
tion of mean-free path than found in 3D, suggesting that for
these parameters, the hydrodynamic corrections are more im-
portant in 2D than in 3D.

In contrast to the 3D results, for which finite-size effects
are not very strong, we expect that in 2D the effect of box
size will be much more pronounced. To illustrate this, we
carried out simulations in a much larger square box of width
L=256a0 box sizes, now with periodic boundary conditions.
These are shown in the top two plots of Fig. 2. We observe
that the temporal diffusion coefficient defined as

D�t� = �
0

t

�v�t��v�0��dt� �24�

continues to grow with time in a manner consistent with the
expected scaling D� ln�t�, as illustrated in the second top
plot in Fig. 2. We expect the diffusion coefficient to eventu-
ally saturate for this finite box size. But for an infinite box,
we expect that D�t� will continue to grow indefinitely, a
manifestation of the Stokes paradox. Although the SRD par-
ticles are point particles, the SRD collision box length
a0 does provide a second intrinsic length scale and so fixed
box of fixed size L2, we expect that D�L /a0 �10�. Such a
scaling is indeed observed in the bottom panel in Fig. 2. For
SRD particles then, the hydrodynamic contribution to the

diffusion coefficient shows similar scaling to that predicted
for colloidal particles.

IV. VELOCITY AUTOCORRELATION FUNCTIONS
OF COLLOIDAL PARTICLES

Having worked out some properties of diffusing SRD par-
ticles, we now turn to the properties of colloidal particles
embedded in a solvent. If memory effects are ignored in a
simple Langevin equation description of a spherical colloid
of mass M then the VACF of a colloidal particle can be
calculated to be �37�

�v�t�v�0�� =
kBT

M
exp�− t/t�� , �25�

where the time t�=M /� indicates how quickly particles for-
get their initial velocity. Its integral is related to the diffusion
coefficient through the Einstein relation,

D = �
0

�

�v�t�v�0��dt =
kBT

�
. �26�

The Einstein relation is of course valid for any physical de-
scription of the VACF.

Langevin approaches have traditionally been used for col-
loidal systems when hydrodynamics could be ignored. How-
ever, it is well known that hydrodynamic effects can have an
important qualitative effect on the VACF. In their pioneering
work, Alder and Wainwright �38� used MD simulations to
demonstrate that the VACF �C�t�� of a tagged particle exhib-
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FIG. 1. Top: deviation of the simulated diffusion coefficient Ds,
from the random collision approximation Do predicted by Eq. �21�,
as a function of the heavy particle mass. We simulated fluid par-
ticles in 2D for a square geometry with walls separated by a dis-
tance L=32a0. Bottom: deviation of the simulated diffusion coeffi-
cient Ds, from the random collision approximation Do, as a function
of the particle mean-free path �. For larger values of the mean-free
path, the diffusion coefficient reduces to the random collision
approximation.
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FIG. 2. The top two plots show the temporal evolution of the
self-diffusion coefficient of a fluid particle in a large box of size
256a0�256a0 with periodic boundary conditions. The right plot
shows that rather than saturate, the diffusion coefficient grows as
D� ln t, as expected from theory. The bottom plot shows the hy-
drodynamic corrections to the diffusion coefficient D compared to
the random collision approximation expression D0 given by Eq.
�21� for different box sizes L. As expected, these corrections show a
logarithmic growth with L /ao.
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its an algebraic decay at long times of the form t−d/2, instead
of the exponential form predicted by the Langevin equation.
They showed that this behavior was a consequence of mo-
mentum conservation and therefore quite general. For colloi-
dal particles in 3D, the diffusion coefficient is dominated by
the contributions from this long-time tail �13�, and we expect
the same to be true in 2D. The asymptotic form of the cor-
relation function for a colloid with slip boundary conditions
can be calculated from kinetic theory �38�,

�v�t�v�0�� = 	d − 1

d�

 kBT

�4��D + ��t�d/2 , �27�

where d is the number of dimensions, and � is the solvent
density. This calculation predicts a t−1 power for the tail in
2D. That this should cause problems for the definition of D is
evident from Eq. �26� because it implies that D diverges
logarithmically with time. Note that similar behavior was
seen for pure SRD particles in Fig. 2, where we found the
scaling D�t�� ln�t�. For the colloids, we expect that the tail
in the VACF will form on the time scale t�=�cs

2 /� it takes the
kinematic viscosity � to diffuse over the particle radius.

Figure 3 shows simulations run for a square box with a
width L=32a0. Equation �27� predicts that the tail should
scale as ���+D��t�−1. We tested this further by varying the
number density � and simultaneously changing the density
of the colloids so that they remain buoyant. For SRD, the
kinematic viscosity � depends only very weakly on � �13,32�
for large values of � and keeping in mind that from equipar-
tition

C�0� = �v�0�2� =
kBT

M
, �28�

it is not hard to show that the long-time tails should all scale
onto the same curve if time is scaled with t / t�. We show this
explicitly in Fig. 3 for a fixed system size. Cx and Cy denote

the x and y components of the correlation function, respec-
tively.

At times shorter than the kinematic time, there is a con-
tribution to the overall diffusion that comes from the local
random collisions between the colloid and the solvent par-
ticles. This is typically dominant on time scales less than the
sonic time tcs=vs /�cc over which collective modes can be
generated �13�. We can calculate it using standard Enskog
kinetic theory, and the ensuing Enskog friction coefficient �E
has the following form �39�

�E
2d =

3�2

4
�cs��3/2	kBT

mM

m + M

1/2

�29�

in two dimensions. Thus for very short times, the decay of
the VACF is characterized by the Enskog time tE=M /�E

2d and
it follows that

�v�t�v�0�� =
kBT

M
exp�− t/tE� �30�

because the collisions are essentially random.
As shown in Fig. 4, for short times, on the order of the

Enskog time tE, the autocorrelation function shows clear ex-
ponential decay, in good agreement with Eq. �30�. The simu-
lations shown are for two box sizes, and for short times, the
VACFs are independent of system size, as expected from the
Enskog theory.

At longer times, Fig. 4 clearly shows the beginning of the
long-time tail. The theoretical line we plot is from Eq. �27�
and fits remarkably well to the data. However, we note that
there are some small deviations with system size at these
longer times, which will be explained below.

We also note that a direct comparison with the Langevin
equation shows that for short times the Langevin equation
overestimates the VACF and that for longer times it under-
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estimates the VACF for colloids. A more in depth discussion
of this point can be found in Appendix B of ref I. In addition,
in two dimensions, the Langevin equation �25� would predict
an exponential form with different t� for different box sizes
because the diffusion coefficient changes with box size. By
contrast, our results show that for short times the VACF is
independent of box size. Clearly the Langevin equation does
a poor job in capturing details of the colloidal VACF.

It is also interesting to see what happens to the VACF
when the confinement is more pronounced. In confined ge-
ometries, the particle-induced flow fields should feel the
presence of the walls. Bocquet and Barrat �40� showed that a
sink in the decay of the long-time tails should occur after an
observation time on the order of tw= L2

4� =�s
2t�. This time is

characteristic of the time required for the long-time tail to
feel the effect of the wall, when L /2 is the average distance
to the wall. We illustrate the effect of the wall on the VACF
in Fig. 5 for three different box sizes. For the two narrower
boxes, the VACF clearly begins to drop below the t−1 power
law but for the largest box, of size L=500a0, we do not
observe any deviation within our error bars. The sink in the
tail for the �s=8 simulation run begins at an observation
times less than 10t�, whereas the kinematic wall time in this
instance is tW�64t�. This may be because of other wall ef-
fects that kick in earlier for such a narrow box or it may be
that the cutoff in the algebraic decay is gradual and com-
mences sooner than predicted by Bocquet and Barrat.

In an important study, Hagen et al. �41� used lattice Bolt-
zmann simulations to investigate the VACF of a colloidal
particle between rigid walls and found qualitative deviations
from the standard long-time tails. In particular, for a sphere
in a narrow enough cylinder, they found negative tails for the
VACF Cx�t� parallel to the walls that exhibited an algebraic
decay such as Cx�t�� t−3/2. Similarly, for a two-dimensional
disk between two plates they found Cx�t�� t−3/2 and for a

three-dimensional sphere between two plates they found
Cx�t�� t−2. These exponents depend on the confinement
rather than on the overall dimension of the system. They
explained the emergence of this negative tail with a simple
mode-coupling theory that takes into account the fact that the
sound wave generated by the colloid becomes diffusive.
They further noticed that for slip walls, the normal behavior
was recovered, suggesting that the origin of the negative tail
lies in the existence of velocity gradients near the wall.

We performed simulations of colloidal discs in a pipe of
length 512a0 with periodic boundaries in the x direction and
with two stick boundary-condition walls at a reduced dis-
tance �s=L /2�cs=2,2.5,3 ,6, apart in the y direction and
show the results in Fig. 6. We find a negative tail for Cx�t�;
the VACF parallel to the plates. We find that the amplitude of
the negative tail grows with increasing confinement. Further-
more, when time is scaled with t / tcs, the correlation func-
tions with the smallest confinement show a minimum at
about t�3tcs, suggesting that sound waves are indeed the
dominant cause of the negative tail, as suggested in �41�. For
the larger confinement shown here ��s=6�, the VACF does
show a rapid decay, but there does not seem to be a negative
tail. This suggests that the diffusive sound wave mechanisms
are still playing a part in the smallest ��s=8� simulations of
Fig. 5 and may explain why the VACF decays on a shorter
time t / tW than predicted by Bocquet and Barrat �40�.

In the bottom two panels of Fig. 6, we observe oscillatory
behavior for Cy�t�, the VACF perpendicular to the plates.
This can be explained as follows: when a particle moves in
the y direction toward the wall, it sets up a momentum flow
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which can reflect off the wall and come back a time later to
push the particle in the opposite direction. This effect should
become more pronounced for stronger confinement, as we
observe. To check this mechanism, we note that the walls
introduce another length scale tW= L2

4� , which is the time it
takes vorticity to diffuse to the walls. If this reflection
mechanism is at play, we would expect the period of the
oscillations to reflect this time scale. In the bottom right
panel of Fig. 6, we observe that when Cy�t� is scaled with the
time t / tW, the oscillation minima indeed fall on top of each
other, at least for sufficiently strong confinement.

As discussed by Hagen et al. �41�, the Cx�t� should exhibit
a negative tail that scales as t−3/2 for sufficiently strong con-
finement. In the upper plot of Fig. 7, we indeed observe that
the exponent is greater than t−1 and consistent with t−3/2, as
expected, although our data is not clean enough to confirm
the exact exponent. Similarly, the final decay of the compo-
nent Cy�t� appears closer to t−1 than to t−3/2.

Clearly confinement has an important effect on the long-
time behavior of the VACF, and there may be further subtle
effects that we have not yet been uncovered. It would be
interesting, for example, to see how the angular-correlation
functions, studied in Ref. �34� with SRD for 3D stick bound-
ary colloids in the bulk phase, would behave under confine-
ment. However, for the calculation of long-time tails, meth-
ods such as lattice Boltzmann techniques used by Hagen et
al. �41�, where noise does not play a big role, may be simpler
and faster to use.

V. DIFFUSION COEFFICIENT OF COLLOIDAL
PARTICLES UNDER CONFINEMENT

The Einstein relation �26� directly relates the VACF and
the diffusion coefficient. We found that for short times, the
VACF was well described by an Enskog form �30� that was
largely independent of the boundaries and that at longer

times it exhibited a long-time tail that was much more sen-
sitive to the boundaries. For strong confinement, the tail
could even be negative or oscillatory, but for weak confine-
ment, it appears to scale as C�t�� t−1.

For an unbounded 2D system, the diffusion coefficient
does not converge, instead its behavior with time can be
approximated as

D2d�t� = �
0

t

�v�t�v�0��dt �
kBT

M ��
0

t�

exp�− t/tE�dt�
+ �

t�

t kBT

8���t
�

kBT

�E
2d +

kBT

8��
�ln t�t�

t , �31�

where we have assumed that the Enskog and hydrodynamic
contributions to the VACF can be separated �this is not quite
true� and, moreover, that the hydrodynamic tail does not kick
until a time scale on the order of the kinematic time t�. We
also assume that D��.

A. Simulations in the “bulk”

In Fig. 8, we present the temporal evolution of the self-
diffusion coefficient of a colloid for a large box. We approxi-
mated colloids in the bulk by using a box of size L2

=256a0�256a0 with periodic boundary conditions. The plot
shows results for solvent densities �=5,10,50. On the time
scales of the simulation, we observe behavior consistent with
D� ln�t�, as expected from the t−1 tail of the VACF. In prac-
tice this would mean that D would grow indefinitely with
time and be unbounded, which is a manifestation of the
Stokes paradox.
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B. Simulations in confinement

Whereas the diffusion coefficient of a two-dimensional
disk in the bulk appears to grow in an unbounded fashion
with time, the diffusion coefficient for a confined fluid is
expected to saturate at a finite value �10,40�. We showed in
Figs. 3–7 that the VACF is affected by the presence of walls
and no longer shows the t−1 behavior at very long times that
would lead to a logarithmic divergence. As a result of the
wall interaction, the diffusion will no longer diverge but will
plateau at a value determined by the distance between the
plates.

We tested this simple argument by simulating colloids un-
der two different levels of confinement. The top panel of Fig.
9 shows the integral of the velocity autocorrelation function
plotted for colloids diffusing between parallel plates a dis-
tance L=32a0 and L=64a0 apart, respectively. For the
smaller system, the temporal diffusion coefficient reaches a
plateau at shorter times than is found for the larger system.

To make these arguments more quantitative, we make the
following approximation to the diffusion coefficient:

D2d�L/�cs� � �
0

tW

�v�t�v�0��dt �
kBT

�E
2d +

kBT

8��
�ln t�t�

tW

= DE +
kBT

8��
ln

tW

t�

= DE +
kBT

4��
ln

L

�cs
, �32�

which indicates that the diffusion of a particle in confinement
should scale with the log of the ratio of its radius to the pipe
width.

We performed simulations to check the validity of this
simple scaling argument. The results are shown in Fig. 9 and
are fit by Eq. �32�, with a small �about 30%� correction for
the prefactor, which, given the simplicity of the approxima-
tion that separates out DE, is remarkably good.

While Eq. �32� works very well for the larger boxes, it
overestimates the diffusion coefficient for the smaller boxes.
This is because the more complex wall effects shown in Fig.
6 come into play so that the VACF no longer shows simple
t−1 behavior assumed in Eq. �32�, and this reduces the diffu-
sion coefficient. In three dimensions, Bungay and Brenner
�42� used standard methods of low Re number hydrodynam-
ics to predict a strong decrease of D with decreasing radius
for narrow pipes. It would be interesting to see if similar
hydrodynamic arguments to those used by Bungay and Bren-
ner �42� could be used to explain the more rapid decrease in
the diffusion coefficient observed in 2D for stronger confine-
ment. We note that for the very smallest pipes, the simple
addition of the Enskog and hydrodynamic contributions that
we postulate may no longer hold either. Finally, we only
show the x component of D in these plots. For short times,
one can also define a y component of D, but the interactions
with the wall make it such that on average the long-time
mean-square displacement is zero.

VI. CONCLUSION

We have applied the SRD simulation method to the study
of the dynamics of two-dimensional disks in confined geom-
etries. We calculated the VACF for colloids and observed the
predicted t−1 behavior as well as the more complex oscillat-
ing behavior and negative tails in strong confinement. We
also observed the logarithmic dependence of the diffusion
coefficient on system size, as originally predicted by Saff-
man �3� for the lateral diffusion of a cylinder in a film. The
finite value of the diffusion coefficient can be connected to a
deviation from the t−1 behavior of the VACF that sets in at
longer times for larger confinement.

Although the Saffman result describes the motion of a
disk of thickness h, and our simulation deals with 2D disks,
we can still map our results onto a real physical system by
equating the diffusion coefficient measured in our simula-
tions to that measured in experiment.

Through this study we have shown that SRD can be fruit-
fully used to simulate colloids in two dimensions. This sug-
gests that it could easily be adapted for the study of other
problems such as protein and lipid molecules in biological
membranes �4–6�, liquid domains in GUVs �7�, or colloids
in a liquid film �8,9�, or various examples from microfluidics
�18�.
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